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Abstract: Topos formalism for quantum mechanics is interpreted in a broader, information retrieval, perspective.
Contexts, its basic components, are treated as sources of information. Their interplay, called daseinisation, de-
fined in purely logical terms, is reformulated in terms of two relations: exclusion and preclusion of queries. Then,
broadening these options, daseinisation becomes a characteristic of proximity of contexts; to quantify it numeri-
cally, Shannon entropy is used.
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1 Introduction

Topos theory has been suggested by Döring and Isham
[1] as an enriched mathematical structure to incorpo-
rate physical theories, first of all, quantum mechanics
(the reader is referred to [3] for a brief outline and to
[4] for a detailed one). The basic notion of the Döring-
Isham approach is that of context. Context in its initial
formulation is a classical snapshot of a possible vari-
ety of the outcomes of an experiment. I suggest to
view it in a more general perspective: each context
is a source of information, making measurement can
be viewed as information retrieval, or pattern recogni-
tion. This approach is inspired by Melucci metaphor
[5], treating information retrieval process as a physi-
cal measurement. Within the suggested approach the
difference between physical experiment and informa-
tion retrieval smears away. Furthermore, topos for-
malism can be treated as a universal operationalistic
phenomenological theory in a broader context than
just physics.

The next essential step towards a complete pic-
ture was to introduce a kind of interplay between non-
comparable contexts, called daseinisation. In tradi-
tional topos formalism, daseinisation is formulated in
logical terms: “IF something true THEN something
true” (for the details see section 3). The idea of this
essay is quantifying daseinisation numerically using
Shannon entropy. In its initial form, daseinisation is
too rough to decsribe the interplay, for instance, in
standard quantum mechanics, a small unitary pertur-
bation may lead to a drastical jump in discrete dasein-
isation, while using Shannon proximity, this transition
remains smooth.

2 Contexts
In this essay, I dwell on a ‘lightweight’ (although
including standard quantum mechanics) version of
topos formalism, when contexts are associated with
random variables with a finite number of values. Step
by step we going to shift from purely physical to
a more general operationalistic, phenomenological
viewpoint. In particular, when defining the ingredi-
ents of a theory, sooner or later certain notions will
remain undefined, treated as basic ones. I suggest to
leave the notion of context not to be defined (yet, at
least) formally. Instead, we focus on

• What contexts can be represented with, what can
serve as proxies of contexts

• What an abstract researcher can get out of a con-
text

The following scenario is meant: a researcher,
call him an agent, makes a query within a given con-
text C and with certainty receives one (and only one
for each query) of the alternative answers. A context
can thus be treated as a generalization of measurement
apparatus, or, more formally, as an exhaustive collec-
tion of alternatives. Examples of contexts representa-
tives are:

• A device with pointer. Distinct positions of the
pointer correspond to the alternatives.

• A commutative algebra with a partition of its unit
element by idempotents.

• A configuration space of a classical system is
not a context. Any its partition, including trivial

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2020.19.12 Roman Zapatrin

E-ISSN: 2224-2678 82 Volume 19, 2020



ones, is a context. The elements of the partition
are alternatives.

• A Hilbert state space H of a quantum system is
not a context. A partition of the unit operator in
H by projectors is a context.

Next, let us see what are contexts for. From a gen-
eral perspective, what is received by an agent making
a query? The general answer is information. I deliber-
ately put apart anything related to the meaning of this
information, the only thing needed in this formalism
is just a possible amount of information. Now we are
a position to give the first numerical characteristics of
a context. This is the maximal amount of information
that can be retrieved during an individual query. To
evaluate it, we use Shannon entropy

S (C) = log2#C

where #C is the number of alternatives within the
contextC. For a device with a pointer #C is the num-
ber of distinct positions of the pointer.

Two measurement apparata belong to the same
context if they are equivalent: when we measure
something, we gain information, and if using appara-
tus A or B can be treated as the same source of infor-
mation, they belong to the same context. It can happen
that context B is a coarse-graining of context A. That
means, that if we useA, we can always know with cer-
tainty, what answers could give us queries within B,
that is B does not add any information with respect to
the context A.

When dealing with finite quantum systems with
the state space H being Hilbert space of finite dimen-
sion, queries are associated with projectors in H. A
context in this case is a decomposition of the identity
operator I

I =
∑
J

PJ , with PJ PK = 0 ∀J 6= K

by mutually orthogonal (not necessary one-
dimensional) projectors, an example will be provided
below.

For a classical system, a context can be associated
with a partition of its configuration space. The config-
uration space itself is the finest context, all others are
coarse-grainings of it. This is not the case for quan-
tum systems, where the finest context does not exist,
this is the core statement of Kochen-Specker theorem.

Now let us move to quantification of contexts. I
suggest a straightforward characteristics, namely, the
information capacity of a context. Making a query
within a context C, the maximal amount of informa-
tion we can get of it is

H(C) = log2#(C)

the logarithm (with base 2) of the number of atomic
queries in C. However this measure says nothing
about the interplay between contexts. To bind con-
texts, the notion of daseinisation is introduced.

3 Daseinisation via exclusion and
preclusion

Daseinisation [2] is a way to look on queries from a
context C1 from a perspective of a context C2. Da-
seinisation is of purely logical nature, in [2] inner and
outer daseinisation are introduced. Begin with for-
mal definitions. Let Q be a query from a context C2.
Then its outer daseinisation within the context C1 is
the least query δ1 (Q) such that

δ1 (Q) is true in C1 =⇒ Q is true in C2

Dually, the inner daseinisation is defined as the great-
est query δ1 (Q) such that

Q is true in C2 =⇒ δ1 (Q) is true in C1

In a degenerate case, when C1 is a coarse-graining of
C2, any query from C1 is a query in C2, therefore

δ1 (Q) = δ1 (Q) = Q

We are going to reformulate these notions in a more
operationalistic terms. For that, we consider two op-
erations on queries. The first is the exclusion, it acts
queries within a given context C

Q 7→ Q

so that Q is the greatest query within C, which is ex-
cluded by Q, intuitively this is NOT Q within C. The
next notion is preclusion, which brings us from a con-
text C1 to another context C2

Q 7→ ¬Q

so that ¬Q is the greatest query within C2, which is
excluded by Q, intuitively this is NOT Q within C2.
Now the outer daseinisations is the preclusion of the
exclusion of Q

δ1 (Q) = ¬Q

while theinner daseinisation is the exclusion of the
preclusion of Q.

δ1 (Q) = ¬Q
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How it looks in quantum mechanics. Within quan-
tum mechanical realm, an element Q of a context is
associated with a projector Q in Hilbert state space
H, then the exclusion is the complement of Q, that is

Q = I−Q

where I is the unit operator in H. Preclusion looks
slightly more complicated. A context C is a partition
of the unit operator inH by projectors

C 7→ I =
∑

Pj |PjPk=0

Pj

then the preclusion of a projectorQ within the context
C is

¬Q =
∑

Pj |QPj=0

Pj

Obviously, if the query Q belongs to context C, its
preclusion within C coincides with its exclusion:

Q ∈ C ⇒ ¬Q = Q

Such definition looks too rough. Let H = C2,
consider a basis {e1, e2} and the context C associ-
ated with appropriate projectors. Consider a family
Cα parametrized by an angular parameter α, each as-
sociated with a rotation of the initial basis by the angle
α. Let Q = Proj(e1). Then its daseinisation is trivial,
because the preclusion ¬Q is

¬Q =

{
Q, if α = 0
0 otherwise

so, a more subtle measure of proximity is needed.

4 Measuring proximity by condi-
tional entropy

Given two contexts C1 and C2, each of them can be
treated as a source of random variables. Suppose a
measurement is performed within the contextC2, then
the the next one is carried out within the context C1,
and the agent is aware of the previous result1. Above
the exclusion and preclusion were introduced as logi-
cal operations on queries. However, each such opera-
tion can be treated as gaining information: to exclude
something is to tell something. Let us make the next

1Note that I am not speaking about different contexts related to
the same physical object. Furthermore, within the suggested ap-
proach the very notion of a physical object becomes secondary.
We just have observers-agents, who exchange information and
their queries.

step and see the things broader, instead of preclusion
we just speak about gaining information. If ¬Q = C2,
that means that nothing can be said within context C2

even if a query Q was made within the context C1.
To evaluate the added amount of information, the

conditional entropy is used. Recall that a pair of ran-
dom variables A,B can be characterized by condi-
tional entropy

S (A|B) =
∑
J

BJS (A|BJ) =
∑
J

BJ
∑
K

A(K|J) log2A(K|J)

Example. In classical case, two different contexts
are two different partitions of the configuration space.

Example. In quantum realm, queries are associated
with projectors and contexts are complete sets of mu-
tually orthogonal projectors. Given a projectorA from
C1 and a projector B from C2, the conditional proba-
bility Prob (A|B) is

Prob (A|B) =
Tr(AB)

TrB
(1)

Now, when all the definitions are set, we pass to
the main point. Suppose we have two contexts C1,
C2. Once we fix a query B from C2, it gives rise to
a probability distribution PB(A) on the set of queries
of C1, namely, the conditional probabilities

PB(A) = Prob (A|B)

For this distribution we can calculate its entropy,
which is just a function S(A) taking numerical val-
ues on the elements (=queries) of C1:

S(A) = −
∑
K

A(K|J) log2A(K|J)

The first consequence is that if C1 is a coarse-
graining of the context C2, then no measurement
within C1 brings us any new information if we know
the result of C2, that is S(A) = 0 for all A. This fact
has a fundamental meaning: mutual information can
be used as a definition of coarse-graining!

An example. Continue the example of a quantum
system with two degrees of freedom and two contexts
associated with the bases inH:

C1 7→ {e1, e2} ; C2 7→ {f1, f2}

Denote α as
cosα = |(e1, f1)|2
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Then the usual daseinisation of any query becomes
trivial as α 6= 0, π/2, while Shannon proximity is
more flexible, namely

S (C1|C2) = − cos2 α log2 cos
@ α−sin2 α log2 sin

2 α

Now, let α ' 0 is small, then given a query related
to he projector Projf1 within C2 we can confer its da-
seinisation in C1 which is anyway

δ1
(
Projf1

)
=

{
Projf1 , if α = 0
I otherwise

where I stands for the unit operator in H, while the
proximity of contexts reads

S (C1|C2) ' α2

thus capturing the proximity of the contexts.

Concluding remarks
Starting from the idea that physical measurement can
be viewed as information retrieval, we consider con-
texts as sources of information. Next, we study the in-
terplay between contexts in purely information terms.
In particular, instead of defining ab initio the con-
text category, we bring it on an operationalistic ba-
sis, namely, if we perform something within context
C2 and then we can with certainty predict the result
within the context C1, that is, C1 provides us with no
additional information with respect to context C2, we
say, that there is an arrow C2 → C1, so the set of
available contexts is given a structure of category.

Another consequence is that within this
information-theoretical approach the notion of a
physical system smears. We are just speaking about
observers who perform queries and exchange infor-
mation. In this terms any collection of contexts may
be said to be a system, and the only meaningful thing
remains to speak about inclusion of systems, that is,
about subsystems.
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